

Group No.

Worksheet 9 EEL 4705

Emerging Logic Devices - K-Map based Mapping

(To convert AND/OR Logic to Majority Logic)

Question 1: Making use of the Algorithm and the K-Maps depicted, reduce the following function into a Majority Logic function. Each of the three functions (f_1, f_2, f_3) will be only from the Library of K-Map patterns depicted above.

- n = a.b.c + a.b.c + a.b.c + a.b.c
- Function needs to be broken in the form $n = Maj(f_1, f_2, f_3)$ Find an admissible pattern for f_1 from the above library.
- Find an admissible pattern for f₁ non the above notary.
 For finding f₂, set Ψ₁ is obtained as follows: if a minterm of n is not a minterm of f₁, add this minterm to Ψ₁.
- Similarly, for finding f_2 , set Ψ_0 is obtained as follows: if a maxterm of n is not a maxterm of f_1 , add this maxterm to Ψ_0 .
- A suitable pattern for f₂ is then determined using new Ψ₁ and Ψ₀ (from the above library).
 Furthermore, to determine f₃, Ψ₁ and Ψ₀ are updated again as follows: if a minterm (maxterm) of node n is not a minterm (maxterm) of both f1 and f2, add this minterm (maxterm) to Ψ₁ (Ψ₀).

C

Ψ1

ΨO

C

Question 2: Perform the AND/OR mapping of the same expression n = a.b.c + a.b.c + a.b.c + a.b.c. Then see the difference in the number of majority gates used for K-map method and AND/OR method.

